An Empirical Study on Energy Disaggregation via Deep Learning
نویسندگان
چکیده
Energy disaggregation is the task of estimating power consumption of each individual appliance from the whole-house electric signals. In this paper, we study this task based on deep learning methods which have achieved a lot of success in various domains recently. We introduce the feature extraction method that uses multiple parallel convolutional layers of varying filter sizes and present an LSTM (Long Short Term Memory) based recurrent network model as well as an auto-encoder model for energy disaggregation. Then we evaluate the proposed methods using the largest dataset available. And experimental results show the superiority of our feature extraction method and the LSTM based model. Keywords-energy disaggregation; neural networks; deep learning;NILM
منابع مشابه
On the Feasibility of Generic Deep Disaggregation for Single-Load Extraction
Recently, and with the growing development of big energy datasets, data-driven learning techniques began to represent a potential solution to the energy disaggregation problem outperforming engineered and hand-crafted models. However, most proposed deep disaggregation models are load-dependent in the sense that either expert knowledge or a hyper-parameter optimization stage is required prior to...
متن کاملEnergy Disaggregation via Learning Powerlets and Sparse Coding
In this paper, we consider the problem of energy disaggregation, i.e., decomposing a whole home electricity signal into its component appliances. We propose a new supervised algorithm, which in the learning stage, automatically extracts signature consumption patterns of each device by modeling the device as a mixture of dynamical systems. In order to extract signature consumption patterns of a ...
متن کاملNonintrusive Load Monitoring Based on Advanced Deep Learning and Novel Signature
Monitoring electricity consumption in the home is an important way to help reduce energy usage. Nonintrusive Load Monitoring (NILM) is existing technique which helps us monitor electricity consumption effectively and costly. NILM is a promising approach to obtain estimates of the electrical power consumption of individual appliances from aggregate measurements of voltage and/or current in the d...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016